Key Components & Technologies in 4G
MIMO – OFDM
MIMO, in contrast to traditional communication systems, takes advantage of multipath propagation to increase throughput, range/coverage, and reliability. MIMO (Multiple Input Multiple Output) systems use spatial multiplexing, wherein multiple transmitting antennas and multiple receiving antennas are used. It permits pparallel streams to be transmitted simultaneously by those antennas. Because MIMO transmits multiple signals across the communications channel,
Data rate in MIMO systems gets multiplied by the number of antennas used.
2G and 3G systems used TDMA, FDMA and CDMA as channel access schemes. However, 4G uses OFDMA and other new technologies (Single Carrier FDMA, Interleaved FDMA, and Multi-carrier CDMA) instead of CDMA, which is used by all 3-G systems.
In OFDM, digital signal itself is split into different narrowband frequencies, modulated by data and then re-multiplexed to create the OFDM carrier. The main benefit of OFDM is high spectral efficiency, high immunity to RF interference, and lower multi-path distortion. Another key advantage of OFDM is that it dramatically reduces equalization complexity by enabling equalization in the frequency domain.
OFDM can be implemented efficiently by using Fast Fourier transforms (FFT) at the transmitter and receiver. FFT provides the channel response for each frequency. With MIMO, the channel response becomes a matrix and hence, MIMO-OFDM signals can be processed using relatively straightforward matrix algebra. Since complexity involved with space-time equalizers for MIMO-OFDM systems is less, they are preferred. Also, MIMO uses multipath propagation to its advantage.
IPv6 - IPv4 address exhaustion is likely to be in its final stages by the time of deployment of IPv6. Hence, for 4G technology, IPv6 has evolved to support a large number of devices. The packet structure for IPv6 is shown below.
IPv4 uses 32 bits and hence it is able to address 4294967269 possible addressable devices, whereas IPv4 uses 128 bits and is able to 3.4 X 1038 possible addressable devices
With IPv6, each device will have its own IP. Even if access point is changed, IP will remain same. IP based backbone or IP Core will allow everything to talk to each other, provided they follow the same protocol.
Smart Antennas
Smart or Intelligent antennas is also a multi-antenna concept which allows the radio beam to follow the user. This is done through beam forming which temporarily improve gain. They are also used to provide transmit and/or receive diversity.
Adhoc Networks
Adhoc networks refer to spontaneous self organisation of network of devices, not necessarily connected to internet. 4G will create hybrid wireless networks using adhoc networks. Intelligent routing to determine shortest path with least powers are used, i.e, data packets are sent through paths with minimal power requirements.
Adaptive Modulation And Coding (AMC)
Adaptive modulation and coding mechanism reacts to instantaneous variations in channel conditions and accordingly modify the modulation & coding formats. Based on feedback from the receiver, response of the channel is estimated and depending upon the channel conditions, AMC allows different data rates to be assigned to different users. Channel statistics aid the transmitter and receiver to optimize system parameters such as modulation, coding, bandwidth, channel estimation filters, and automatic gain control.
Adaptive Hybrid ARQ
Efficient and reliable Medium access control (MAC) layer performance is extremely important for reliable link performance over the lossy wireless channel. TO achieve this, an automatic retransmission and fragmentation mechanism called automatic Repeat Request (ARQ) is used, wherein the transmitter breaks up packets received from higher layers into smaller sub packets, which are transmitted sequentially. If a sub packet is received incorrectly, the transmitter is requested to retransmit it. This mechanism introduces time diversity into the system due to its capability to recover from noise, interference, and fades.
Improved Modulation
Previous standards used Phase-shift keying, more spectrally efficient modulation schemes such as 64-QAM (Quadrature Amplitude Modulation) is being used for 4G systems.
Software Defined Radio (SDR)
SDR is key to 4G systems. Software Defined Radio allows some of the functional modules of radio equipment like modulation/demodulation, signal generation, coding and link-layer protocols, that used to be traditionally implemented in special purpose hardware to be implemented in modifiable software or firmware operating on programmable processing technologies. Since 4G is all about convergence of diverse wireless standards, this can be efficiently realized using SDR technology
Comparison with 3G
Parameters | 3G | 4G |
Network Architecture | cell-based | Integration of various wireless technologies |
Speeds | 384 Kbps to 2 Mbps | 100 Mbps to 1 Gbps |
Frequency Band | Dependent on country or continent (1800-2400 MHz) | Higher frequency bands (2-8 GHz) |
Bandwidth | 5-20 MHz | 100 MHz (or more) |
Switching Scheme | Circuit and Packet | Packet
|
Access Technologies | W-CDMA, 1xRTT, Edge | OFDM and MC-CDMA |
IP | No. of air link protocols | All IP (IP6.0) |
4-G Systems
WirelessMAN-Advanced
o IMT-A compliant version of WiMAX or WiMAX 2 based on IEEE 802.16m
o WiMAX (Worldwide Interoperability for Microwave Access) is an IP based, wireless broadband access technology
o WirelessMAN is under development.
o Present implementation of WiMAX does not comply with 4G specifications
o Uses OFDM in uplink and downlink.
o Mobile WiMAX, IEEE 802.16e standard offers peak data rates of 128 Mbit/s downlink and 56 Mbit/s uplink over 20 MHz wide channel.
4G LTE (Long Term Evolution) Advanced
· IMT-A complaint version of LTE, also referred to as E-UTRA (Evolved UMTS Terrestrial Radio Access) or E-UTRAN(Evolved UMTS Terrestrial Radio Access Network).
· UMTS Long Term Evolution (LTE) was introduced in 3GPP Release 8 which supports data rates of up to 300 Mbps (4x4 MIMO) and up to 150 Mbps (2x2 MIMO) in the downlink and up to 75 Mbps in the uplink. Release 10 of LTE is likely to approach IMT-A, download upto 1 Gbps and upload upto 500 Mbps.
· Uses OFDMA for downlink & Uses Single Carrier Frequency Division Multiple Access (SC-FDMA) for uplink.
· Uses 64QAM modulation
· Uses MIMO and beam forming with up to 4 antennas
· All IP Network
Moving Beyond 4G
4G is not the end of all. "5G Technology" is already in research arena and is bound to up the data rate further.5G is going to alter the way of our usage of our cellphones; may replace our Desktop PCs/laptops. Coupled with innovations being done in the field of smart sensors, 5G mobile phones with extremely high data rates, IP core, and world-wide coverage will offer features which have not imagined so far.
Currently 5G is not a term officially used for any particular specification, however, it is being used in research papers and standardization bodies for the future wireless standards.